

ORIGINAL ARTICLE

Influence of vitamin D receptor haplotypes on blood lead concentrations in environmentally exposed children of Uygur and Han populations

Yan Chen¹, Ji-Wen Liu¹, Jiang-Xia Zhao², Jun Cui³, and Wei Tian¹

¹Department of Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China, ²School of Public Health, FuDan University, Shanghai, China, and ³Institute of Health Care for Children in Urumqi, Urumqi, Xinjiang, China

Abstract

Objective: To explore the association between polymorphism of vitamin D receptor (VDR) and lead poisoning in Uygur and Han children in China.

Methods: The *Bsml*, *Apal* and *TaqI* restriction sites of VDR genotyping were determined by polymerase chain reaction–restriction fragment length polymorphism in 443 Uygur and 469 Han children from Xinjiang province. The correlation between the polymorphism of VDR haplotypes and blood lead levels was explored.

Results: The genotype frequencies of VDR had significant differences in Han and Uygur children ($p < 0.01$). According to VDR–*Bsml*, *Apal* and *TaqI* haplotype analysis in Han children, haplotypes Atb and AtB were considerably decreased in the lead poisoning group ($p < 0.05$) while haplotype aTb and ATb were significantly increased in the lead poisoning group ($p < 0.01$). However, such results were not found in Uygur children ($p < 0.05$).

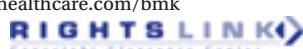
Conclusion: A significant difference was seen in the frequency distribution of the VDR genotype among the different races. Haplotypes Atb and AtB might be protective factors while haplotypes ATb and aTb might be risk factors in Han children.

Keywords: Vitamin D receptor; haplotype; lead poisoning; Uygur; Han

Introduction

Lead is a common environmental pollutant, which has been known for thousands of years. It is well documented that lead causes a wide variety of detrimental effects on the developing central nervous system, including cognitive deficits (Finkelstein et al. 1998, Bressler et al. 1999, Lidsky & Schneider 2003, Marchetti 2003). Lead poisoning is diagnosed if the blood lead level is higher than $10 \mu\text{g dl}^{-1}$ (US Centers for Disease Control and Prevention (CDC) 1997). It is more frequent in children than in adults, because of hand-to-mouth activities, a faster respiratory rate and better intestinal absorption of lead, and these factors increase the uptake of lead (Lin-Fu 1973, Ziegler et al. 1978). It is noteworthy that in children, the

blood lead level is determined by multifactors, including the exposure and some unidentified genetic susceptibilities (CDC 1997, Lanphear et al. 2002, Guidotti & Ragain 2007).


The secosteroid hormone vitamin D, its receptor (VDR) and the metabolizing enzymes involved in the formation of the biologically active form of the hormone together are major players in the vitamin D endocrine system. This system plays an important role in the skeletal metabolism, including intestinal calcium absorption (Haussler et al. 1998). The gene coding for the vitamin D receptor (VDR) is located on chromosome 12q13 (Baker et al. 1988; Miyamoto et al. 1997). Previous studies showed that the polymorphism in a *Bsml* restriction site in the intron between exons γ and η (Zmuda et al.

Address for Correspondence: Yan Chen, Department of Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830054, China. E-mail: yan_chen92@yahoo.com.cn

(Received 28 October)

ISSN 1354-750X print/ISSN 1366-5804 online © 2010 Informa UK Ltd
DOI: 10.3109/13547500903444880

<http://www.informahealthcare.com/bmk>

2000) is associated with the uptake of lead (Weaver et al. 2005, Schwartz et al. 2000). However, little information is available about the association between blood lead levels and the polymorphism in *ApaI* and *TaqI* restriction sites of *VDR* (Rezende et al. 2008).

Linkage disequilibrium (LD) measures describe the association (or co-occurrence) of alleles of polymorphisms adjacent to each other (Wall & Pritchard 2003); haplotypes are blocks of linked alleles of adjacent polymorphisms whereby the length of such a block coincides with the strength of LD across the area. The frequent haplotype alleles can be found around the polymorphic variation within 10–20 kb. In practice, this also means that relatively few polymorphisms have to be genotyped to 'cover' the variance in a certain area. Therefore, a massive effort was made to determine a haplotype map of the human genome (International HapMap Consortium 2003, Wall & Pritchard 2003, Barnes 2006).

In the present cross-sectional study, we investigated the combined effects (haplotype analysis) of three polymorphisms (*BsmI*, *ApaI* and *TaqI*) of *VDR* on blood lead levels in children of two races, Uygur and Han, in order to examine the contribution of the *VDR* haplotype on the variability of blood lead levels.

Materials and methods

Materials

High purity deionized water (18.2 mΩcm) obtained by a Milli-Q water purification system (Millipore, Bedford, MA, USA) was used throughout. All reagents used were of high purity analytical grade. All tubes, plastic bottles, cups and glassware materials were cleaned by soaking in 10% v/v HNO₃ for 24 h and rinsing five times with Milli-Q water.

Study population

A total of 443 Uygur children and 469 Han children from the different schools in the same community, aged 6–10

years, were enrolled in the study after informed consent was obtained from April to June 2005 at Urumqi, China. Each subject completed an interviewer-administered questionnaire including information about age, gender, living conditions, lifestyle, and health status, etc.

Blood collection

Venous blood samples were collected from each subject in two separated fractions of 4 ml: one evacuated tube containing lyophilized heparin (Vacutainer BD, Franklin Lakes, NJ, USA; trace metals free) for metal analysis, and one containing EDTA (Vacutainer BD,) for genotyping. Before collection, the skin of the children was cleaned with alcohol and MilliQ water. And blood samples were stored at –20°C, until used for blood lead measurement and *VDR* genotyping.

Determination of lead in blood

Blood lead level was measured by graphite furnace atomic absorption spectrophotometry (Zhang et al. 2000).

DNA extraction

Genomic DNA was extracted from blood samples by a routine phenol-chloroform method (Miller et al. 1988).

VDR genotyping

An assay based on polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotype of *BsmI*, *ApaI* and *TaqI* restriction sites in the *VDR* gene. The primer sequence was designed by Oligo 6.0 software. Briefly, the genotypes were determined by PCR-RFLP, and the primers, annealing temperature, length of amplified fragments, restriction pattern and restriction enzymes used are listed in Table 1. Genomic DNA (50–100 ng) was used as a

Table 1 Primer sequences, condition for amplification, restriction pattern and restriction enzymes used.

Polymorphisms	Primer sequence	Annealing temperature (°C)	Length (bp)	Restriction enzyme	Restriction or PCR pattern (bp)
<i>VDR</i>	F: 5'-CAACCAAGACTACAAGTACCGCGTCAGTGA-3' R: 5'-AACAGCGGGAAAGAGGTCAAGGG-3'	58	800	<i>BsmI</i>	BB: 800 Bb: 800, 650, 150 bb: 650, 150
<i>BsmI</i> site					
<i>VDR</i>	F: 5'-GTGCGCCCATGGAAGGACCTAGGTCTG-3' R: 5'-AAACACTTCGAGCACAGGGCGTTA-3'	70	461	<i>ApaI</i>	AA: 461 Aa: 461, 174, 287 aa: 174, 287
<i>ApaI</i> site					
<i>VDR</i>	F: 5'-GTGCGCCCATGGAAGGACCTAGGTCTG-3' R: 5'-AAACACTTCGAGCACAGGGCGTTA-3'	70	461	<i>TaqI</i>	TT: 451, 10 Tt: 451, 250, 201, 10 tt: 250, 201, 10
<i>TaqI</i> site					

PCR, polymerase chain reaction.

template. PCR was performed in a 25- μ l reaction volume containing 50–100 ng genomic DNA, 0.2 μ mol l⁻¹ of each primer, 1 \times PCR buffer, 0.2 μ mol l⁻¹ of each deoxynucleotide triphosphate, 2.0 mmol l⁻¹ MgCl₂ and 0.75 units DNA Taq polymorphism. The PCR programme was a 5-min denaturation step at 95°C followed by 35 cycles of 94°C for 30 s, 62°C for 30 s, 72°C for 45 s and a final extension step at 72°C for 5 min.

The variant alleles in VDR create *BsmI*, *ApaI* and *TaqI* sites, respectively. After digestion at 37°C for hours the products were resolved on 2–3% agarose gels and the digested PCR products were then observed under an ultraviolet image system. All genotypes were evaluated and agreed on by at least two people independently. Ten per cent of the DNA samples were selected randomly for repeats and the concordance was 100%.

Statistical analysis

All data were analysed by using SPSS 10.0 software (SPSS Inc., Chicago, IL, USA). The linkage disequilibrium was done by using 2 LD and the haplotype analysis was done by using Phase 2.0. Values are shown as mean \pm SD; p < 0.05 was considered statistically significant.

Results

The blood lead levels in Uygur and Han children

In the 912 children, the blood lead levels ranged from 0.5 to 48.2 μ g dl⁻¹, with an average of 5.45 \pm 0.22 μ g dl⁻¹, while 23.36% (213) of the children had a blood lead level > 10 μ g dl⁻¹ (lead poisoning). The blood lead levels were the same in Uygur children (5.57 \pm 0.223 μ g dl⁻¹, n = 443) and Han children (5.30 \pm 0.224 μ g dl⁻¹, n = 469) (t = 0.90, p = 0.37). The incidence of lead poisoning was also the same in Uygur (23.26%) and Han (23.45%) children (χ^2 = 0.0053, p = 0.99). The blood lead levels at different ages (<7, 8–9, >10 years) were the same in Uygur (F = 2.36, p > 0.05, ANOVA, df = 2) and Han children (F = 9.64, p > 0.05, ANOVA, df = 2). Also the blood levels in different genders were the same in Uygur (t = 1.96, p = 0.16) and Han children (t = 0.00, p = 0.96).

VDR genotype and blood lead concentration

All of the allele frequencies of VDR in the three restriction sites complied with Mendel's law (Table 2). At *BsmI*, *ApaI* and *TaqI* restriction sites, the allele frequencies of B, A, and T were significantly different between Uygur (B: 0.18; A: 0.46; T: 0.54) and Han children (B: 0.06; A: 0.28; T: 0.94) children. As the polymorphisms of *BsmI*, *ApaI* and *TaqI* are associated with VDR function, including expression and efficacy (Howard et al. 1995, Matsuyama et al. 1995, Tokita et al. 1996, Uitterlinden et al. 2004), we tested whether these polymorphisms contribute to the variable blood lead levels. As illustrated in Table 3, in Uygur and Han children, those with the BB/Bb genotype have higher blood lead levels than those who do not (p = 0.00), and the blood lead levels are the same between the Uygur and Han children with *ApaI* site AA/Aa or *TaqI* site TT genotype.

VDR *BsmI*-*ApaI*-*TaqI* haplotype and lead poisoning in Uygur and Han children

The haplotype analysis was done because LD occurred on the *BsmI*-*ApaI*-*TaqI* loci of the VDR gene (Uitterlinden et al. 2004). 2 LD analysis also showed that there were significant linkages among the genotypes of VDR in three loci in both Han and Uygur children. The combination of alleles in the three loci generated eight haplotypes – ATb, ATB, Atb, AtB, aTb, aTB, Atb, atB – and the frequency of these haplotypes were, respectively, 0.09, 0.01, 0.31,

Table 2. The genotype frequencies of VDR *BsmI*, *ApaI* and *TaqI* sites in Uygur and Han children.

Gene	Genotype	Uygur children		Han children		χ^2	<i>p</i> -Value
		<i>n</i>	%	<i>n</i>	%		
<i>VDR</i>	BB	17	3.94	0	0	332.06	0.00
	Bb	124	28.77	54	11.51		
	bb	290	67.29	415	88.49		
<i>(BsmI)</i>	AA	92	21.90	40	8.53	199.45	0.00
	Aa	200	47.62	182	38.81		
	aa	128	30.48	247	52.66		
<i>VDR</i>	TT	125	29.76	411	87.63	506.76	0.00
	Tt	208	49.52	58	12.37		
	tt	87	20.72	0	0		

Table 3. VDR *BsmI*, *ApaI* and *TaqI* sites and blood lead levels of Uygur and Han children.

Genotype	<i>n</i>	Han population		<i>p</i> -Value	<i>n</i>	Uygur population		<i>p</i> -Value
		Blood lead level (μ g dl ⁻¹), mean \pm SD				Blood lead level (μ g dl ⁻¹), mean \pm SD		
<i>VDR (BsmI)</i>	BB/Bb	54	9.55 \pm 0.14	0.00	141	8.81 \pm 0.16		0.0000
	bb	415	4.90 \pm 0.22		290	4.47 \pm 0.23		
<i>VDR (ApaI)</i>	AA/Aa	222	5.03 \pm 0.22	0.39	292	5.49 \pm 0.22		0.87
	aa	247	5.62 \pm 0.22		128	5.75 \pm 0.24		
<i>VDR (TaqI)</i>	TT	411	5.25 \pm 0.22	0.39	125	5.75 \pm 0.22		0.84
	Tt/tt	58	5.75 \pm 0.21		295	5.49 \pm 0.23		

0.25, 0.28, 0.14×10^{-2} , 0.03 and 0.02 in Uygur children, and 0.22, 0.04, 0.15, 0.04, 0.24, 0.05, 0.21 and 0.05 in Han children. Han and Uygur children have different frequencies in some haplotypes, e.g. ATb ($\chi^2=6.45$, $p=0.01$), Atb ($\chi^2=7.23$, $p=0.0046$) and AtB ($\chi^2=17.79$, $p<0.001$) (Table 4).

To test the relationship between the haplotypes and the susceptibility of lead poisoning, we compared the frequencies of the haplotypes in children with lead poisoning and normal Han and Uygur children. In Han children, the frequencies of both haplotypes Atb and AtB were considerably lower in children with lead poisoning than in normal children, while the frequencies of haplotypes aTb and ATb were significantly higher in children with lead poisoning ($p<0.05$, $p<0.01$) (Tables 5 and 6). However, the frequencies of all haplotypes were not significantly different in children with lead poisoning and normal Uygur children (Table 7).

Discussion

The present study is the first to report the polymorphism of *VDR* in three restriction loci and the haplotypes in a Uygur population. Similarly to Han children, Uygur children with the B allele at the *BsmI* restriction site have higher blood lead levels. In Han children, the haplotype analysis shows that haplotypes Atb and AtB might be protective factors while haplotypes ATb and aTb might be risk factors. These may provide a biomarker for screening and protecting the susceptible population.

Table 4. Haplotype frequencies in Uygur and Han children.

Haplotype	Frequency in Uygur children	Frequency in Han children	χ^2	<i>p</i> -Value
ATb	0.22	0.09	6.45	0.01
ATB	0.04	0.01	0.82	0.73
Atb	0.15	0.31	7.23	0.0046
AtB	0.04	0.25	17.79	0.0000
aTb	0.24	0.28	0.42	0.53
aTB	0.05	0.14×10^{-2}	6.11	0.01
Atb	0.21	0.03	15.34	0.0000
atB	0.05	0.02	0.59	0.42

Table 5. Haplotype frequencies of Han children in lead poisoning and non-lead poisoning groups.

Haplotype	Frequency	Lead poisoning	Non-lead poisoning	χ^2	<i>p</i> -Value
ATb	0.09	0.16	0.09	4.89	0.03
ATB	0.01	0.01	0.01	0.00	0.99
Atb	0.31	0.07	0.34	31.56	0.00
AtB	0.25	0.09	0.26	15.04	0.00
aTb	0.28	0.60	0.25	49.71	0.00
aTB	0.14×10^{-2}	0.01×10^{-2}	0.16×10^{-2}	0.15	0.70
Atb	0.03	0.03	0.03	0.08	0.78
atB	0.02	0.03	0.02	0.43	0.51

The cellular actions of hormonal vitamin D depend on its interaction with the gene of *VDR* that regulates the production for calcium-binding proteins. The *VDR* gene exists in several polymorphic forms in humans - *BsmI*, *ApaI* and *TaqI* restriction sites. The current study found the allele frequencies of *VDR* restriction sites *BsmI*, *ApaI* and *TaqI* among Uygur children are, respectively, 0.18 for B, 0.46 for A and 0.54 for T, which is significantly different from Han children (0.06 for B, 0.28 for A and 0.94 for T), in keeping with the notion that *VDR* polymorphism has been demonstrated to vary with race. The B allele of *BsmI* RFLP has a lower frequency in Asians (4–8%) compared with Caucasians and Africans (17–22%) (Morrison et al. 1994, Garner et al. 1995, Zhang et al. 2006). The A allele of *ApaI* RFLP has a frequency in Asians of 27% compared with 31–44% in Caucasians and Africans (Wang et al. 2006, Uitterlinden et al. 2004), and also the T allele of *TaqI* RFLP has a higher frequency in Asians (85–96%) compared with Caucasians and Africans (29–41%) (Nishijima et al. 2002, Uitterlinden et al. 2004). Taken together, the frequency of *VDR* restriction sites *BsmI*, *ApaI* and *TaqI* among Uygur children are similar to the Caucasian population, while those in Han children are similar to the Asian population.

In our study, the blood lead level of children varied from 0.5 to $48.2 \mu\text{g dl}^{-1}$, the mean blood lead concentration

Table 6. Haplotype analysis of *VDR* genotyping and lead poisoning in Han children.

Group	Atb		ATb		AtB		aTb	
	+	-	+	-	+	-	+	-
Lead poisoning	8	106	10	104	10	104	69	45
Non-lead poisoning	116	229	54	291	91	254	86	259
Total	124	335	64	395	101	358	155	304
χ^2	30.76		3.38		15.47		48.56	
<i>p</i> -Value	0.00		0.03		0.00		0.00	
Odds ratio	0.15		0.52		0.27		4.62	
95% Confidence interval	0.07–0.32		0.26–1.06		0.13–0.54		2.95–7.23	

Table 7. Haplotype frequencies in Uygur children in lead poisoning and non-lead poisoning groups.

Haplotype	Frequency	Lead poisoning	Non-lead poisoning	χ^2	<i>p</i> -Value
ATb	0.22	0.23	0.18	1.33	0.25
ATB	0.04	0.04	0.04	0.01	0.92
Atb	0.15	0.16	0.13	0.67	0.41
AtB	0.04	0.03	0.06	1.96	0.16
aTb	0.24	0.23	0.27	0.70	0.40
aTB	0.05	0.05	0.08	2.27	0.13
Atb	0.21	0.22	0.18	0.81	0.37
atB	0.05	0.04	0.06	0.42	0.52

was $5.45 \pm 0.22 \mu\text{g l}^{-1}$ and the blood lead concentration of 23.36% of children was $>10 \mu\text{g dl}^{-1}$. The blood lead level of Uygur children was slightly higher than in Han children, but no significant difference was found. The blood lead concentration of children in Urumqi was higher than in Dalian ($4.51 \mu\text{g l}^{-1}$) and Qingdao ($4.74 \mu\text{g l}^{-1}$), and similar to Beijing ($5.26 \mu\text{g l}^{-1}$) and Guangzhou ($5.97 \mu\text{g l}^{-1}$) in China (Zhang et al. 2005). The high-risk factors of parents' education, parents' occupation, bad habits, housing condition and living environment were associated with blood lead levels. It is important for prevention and control of lead poisoning in children to direct against the selected factors.

Most studies of the *VDR* gene have focused on the *BsmI* polymorphism. The BB genotype has been associated with lower bone mineral density and other diseases, particularly in women and may play a role in the development of osteoporosis (Lurie et al. 2007, Gómez-Vaquero et al. 2007, Morrison et al. 1992). Lead can substitute for calcium, which is a common mechanism underlying its toxic effects Finkelstein et al. 1998, Bressler et al. 1999, Marchetti 2003). It is possible that the genetic polymorphism in *VDR* may change the susceptibility to lead poisoning. In our study, we found that the *VDR* polymorphism of the *BsmI* restriction site affected blood lead levels for Uygur and Han children. It is consistent with previous studies showing that the BB genotype is associated with an uptake of lead and susceptibility to lead toxicity (Rezende et al. 2008, Weaver et al. 2005, Schwartz et al. 2000).

The functional significance of the *BsmI* polymorphism is unclear because it is not located at the exon-intron boundaries, and would not influence the structure of the *VDR*; and recent *in vitro* studies have not demonstrated differences in *VDR* expression or cellular responsiveness to vitamin D treatment by genotype (Uitterlinden et al. 2004, Zmuda et al. 2000). This suggests that the *BsmI* polymorphism may be in LD with another functional variant at the *VDR* locus. LD occurred on the *BsmI* site, *Apal* site and *TaqI* site of the *VDR* gene, which we called the *BsmI-Apal-TaqI* haplotype. We found eight haplotypes existed in both Uygur and Han children, but haplotypes Atb and AtB were considerably decreased in the lead poisoning group while haplotypes aTb and ATb were significantly increased in the lead poisoning group of Han children; these results were not found in Uygur children.

In the present study, blood lead levels varied from 0.5 to $48.2 \mu\text{g dl}^{-1}$, and the mean blood lead level was $5.45 \pm 0.22 \mu\text{g dl}^{-1}$, which is barely below the normal reference level currently set at $10 \mu\text{g dl}^{-1}$. However, recent studies have reported the possibility of adverse effects, including intellectual impairment in young children, at blood lead levels $<10 \mu\text{g dl}^{-1}$, suggesting that there is no safe level of exposure (Fulton et al. 1987, Lanphear et al. 2000, Koller et al. 2004). In addition, measurements of the whole blood are still the

most reliable indicator of recent lead exposure, although some alternatives include lead determinations in plasma/serum, saliva, bone, teeth, feces and urine (Barbosa et al. 2005, Costa de Almeida et al. 2007).

In conclusion, different *VDR BsmI* RFLP genotypes were shown to be associated with blood lead levels in environmentally exposed Uygur and Han children, especially the *BsmI-Apal-TaqI* haplotype for Han children. A significant *VDR* allele difference existed in Uygur and Han populations; it is important for researchers to provide the basic information of *VDR* genotype for Chinese populations, especially Chinese Uygur populations.

Acknowledgements

This study was supported by Xinjiang Education Department grant (XJEDU2004S16).

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

- Barbosa F Jr, Gerlach RF, Parsons PJ. (2005). A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. *Environ Health Persp* 113:1669-73.
- Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O'Malley BW. (1988). Cloning and expression of full-length cDNA encoding human vitamin D receptor. *Proc Natl Acad Sci USA* 85:3294-8.
- Barnes MR. (2006). Navigating the HapMap. *Hepatology* 44:1380-90.
- Bressler J, Kim K, Chakrabarti T, Goldstein G. (1999). Molecular mechanisms of lead neurotoxicity. *Neurochem Res* 24:595-600.
- Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. (2003). Intellectual impairment in children with blood concentrations below 10 microg per deciliter. *N Engl J Med* 348:1517-26.
- CDC. (1997). Screening Young Children for Lead Poisoning: Guidance for State and Local Public Health Officials. Atlanta, GA: Centers for Disease Control and Prevention.
- Costa de Almeida GR, Pereira Seraiva Mda C, Barbosa F Jr, Krug FJ, Krug FJ, Cury JA, Rosario de Sousa Mda L, Rabelo Buzalaf MA, Gerlach RF. (2007). Lead contents in the surface enamel of deciduous teeth sampled *in vivo* from children in uncontaminated and in lead-contaminated areas. *Environ Res* 3:337-45.
- Finkelstein Y, Markowitz ME, Rosen JF. (1998). Low-level lead induced neurotoxicity in children: an update on central nervous system effects. *Brain Res Rev* 27:168-76.
- Fulton M, Raab G, Thomson G, Laxen D, Hunter R, Hepburn W. (1987). Influence of blood lead on the ability and attainment of children in Edinburgh. *Lancet* 8544:1221-6.
- Garnero P, Borel O, Sorrey-Rendu E. (1995). Vitamin D receptor gene polymorphisms do not predict bone turn over and bone mass in healthy Japanese woman. *J Bone Miner Res* 10:1283-8.
- Guidotti TL, Ragaini L. (2007). Protecting children from toxic exposure: three strategies. *Pediatr Clin North Am* 54:227-35.

Gómez-Vaquero C, Fiter J, Enjuanes A, Nogués X, Díez-Pérez A, Nolla JM. (2007). Influence of the BsmI polymorphism of the vitamin D receptor gene on rheumatoid arthritis clinical activity. *J Rheumatol* 34:1823-6.

Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez, CE, Jurutka, PW. (1998). The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. *J Bone Miner Res* 13:325-49.

Howard G, Nguyen T, Morrison N, Watanabe T, Sambrook P, Eisman J, Kelly PJ. (1995). Genetic influences on bone density: physiological correlates of vitamin D receptor gene alleles in premenopausal women. *J Clin Endocrinol Metab* 80:2800-5.

International HapMap Consortium. (2003). The International Hapmap Project. *Nature* 426:789-96.

Koller K, Brown T, Spergeon A, Levy L. (2004). Recent developments in low-level lead exposure and intellectual impairment in children. *Environ Health Persp* 112:987-94.

Lanphear BP, Dietrich K, Auinger P, Cox C. (2000). Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. *Public Health Rep* 115:521-9.

Lanphear BP, Hornung R, Ho M, Howard CR, Eberle S, Knauf K. (2002). Environmental lead exposure during early childhood. *J Pediatr* 140:40-7.

Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T. (2005). Low-level environmental lead exposure and children's intellectual function: an international pooled analysis. *Environ Health Perspect* 113:894-9.

Lidsky TI, Schneider JS. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. *Brain* 126:5-19.

Lin-Fu JS. (1973). Vulnerability of children to lead exposure and toxicity: part one. *N Engl J Med* 289:1229-33.

Lurie G, Wilkens LR, Thompson PJ, McDuffie KE, Carney ME, Terada KY, Goodman MT. (2007). Vitamin D receptor gene polymorphisms and epithelial ovarian cancer risk. *Cancer Epidemiol Biomarkers Prev* 16:2566-7.

Marchetti C. (2003). Molecular targets of lead in brain neurotoxicity. *Neurotox Res* 5:1-15.

Matsuyama T, Ishii S, Tokita A, Yabuta K, Yamamori S, Morrison NA, Eisman JA. (1995). Vitamin D receptor genotypes and bone mineral density. *Lancet* 345:1238-9.

Miller SA, Dykes DD, Polesky HF. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. *Nucleic Acids Res* 16:1215.

Miyamoto K, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, Inoue Y, Morita K, Takeda E, Pike JW. (1997). Structural organization of the human vitamin D receptor chromosomal gene and its promoter. *Mol Endocrinol* 11:1165-79.

Morrison NA, Qi JC, Tokita A. (1994). Prediction of bone density from vitamin D receptor alleles. *Nature* 367:284-7.

Morrison NA, Yeoman R, Kelly PJ, Eisman JA. (1992). Contribution of transacting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulation osteocalcin. *Proc Natl Acad Sci USA* 89:6665-9.

Nishijima S, Sugaya K, Naito A, Morozumi M, Hatano T, Ogawa Y. (2002). Association of vitamin D receptor gene polymorphism with urolithiasis. *J Urol* 167:2188-91.

Rezende VB, Barbosa F Jr, Montenegro MF, Sandrim VC, Geriach RF, Tanus-Santos JE. (2008). Haplotypes of vitamin D receptor modulate the circulating levels of lead in exposed subjects. *Arch Toxicol* 82:29-36.

Schwartz BS, Lee BK, Lee GS, Stewart WF, Simon D, Kelsey K, Todd AC. (2000). Associations of blood lead, aminolevulinate acid delatale lead, antibia lead with polymorphisms in the vitaminD receptor and δ -aminolevulinate acid dehydratase genes. *Environ Health Perspect* 108:949-54.

Tokita A, Matsumoto H, Morrison NA, Tawa T, Miura Y, Fukamau chi K, Mitsuhashi N, Irimoto M, Yamamori S, Miura M, Wata nabe T, Kuwabara Y, Yabuta K, Eisman JA. (1996). Vitamin D receptor alleles, bone mineral density and turnover in premenopausal Japanese women. *J Bone Miner Res* 11:1003-9.

Uitterlinden AG, Fang Y, van Meurs J, Plos HA, van Leeuwen JP. (2004). Genetic and biology of vitamin D receptor polymorphism. *Gene* 338:143-56.

Wall JD, Pritchard JK. (2003). Haplotype blocks and linkage disequilibrium in the human genome. *Nat Rev Genet* 4:587-97.

Wang YH, Yang JJ, An J, Tang Y, He JW, Zhang ZL. (2006). The frequency of distribution of osteoporotic candidate genes polymorphism in women of Miao and Han Nationalities. *Chinese Gen Pract* 9:109-11.

Weaver VM, Schwartz BS, Jaar BG, Ahn KD, Todd AC, Lee SS, Kelsey KT, Silbergeld EK, Lustberg ME, Parsons PJ, Wen J, Lee BK. (2005). Associations of uric acid with polymorphisms in the delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase genes in Korean lead workers. *Environ Health Perspect* 113:1509-15.

Zhang HH, Tao GS, Gao YH. (2006). Studies on the distribution of vitamin D receptor gene polymorphism in Han, Uyghur, Kazak and Mongoloid nationality in China. *Chin J Osteoporos* 12:1-3.

Zhang SM, Dai YH, Xie XH, Fan ZY, Tang ZW. (2005). Study on blood lead level and risk factors among children aged 0-6 years in 15 cities in China. *Chin J Epidemiol* 26:651-4.

Zhang Y, Luo WH, Li H. (2000). Determination of lead in blood by graphite furnace atomic absorption spectrometry using a modified procedure. *Chin J Prev Med* 134:242-4.

Ziegler EE, Edwards BB, Jensen RL. (1978). Absorption and retention of lead by infants. *Pediatr Res* 12:29-34.

Zmuda JM, Cauley JA, Ferrell RE. (2000). Molecular epidemiology of vitamin D receptor gene variants. *Epidemiol Rev* 22:203-17.